Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\left\{\left[\mu-N, N^{\prime}\right.\right.$-Bis(salicylidene)-1,3-propanediaminato- N, N^{\prime} dimethylformamide]zinc(II)\}dichlorozinc(II)

Leyla Tatar, ${ }^{\text {a* }}$ Orhan Atakol ${ }^{\text {b }}$ and Dinçer Ülkü ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Hacettepe University, Department of Engineering Physics, Beytepe 06532, Ankara, Turkey, and ${ }^{\mathbf{b}}$ Ankara University, Department of Chemistry, Ankara, Turkey

Correspondence e-mail: tatar@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.029$
$w R$ factor $=0.090$
Data-to-parameter ratio $=10.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\left[\mathrm{Zn}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$, is a doubly oxygen-bridged dinuclear complex with non-crystallographic mirror symmetry. One of the Zn^{2+} ions has a distorted square-pyramidal environment involving two O and two N atoms of the bis(salicylidene)-1,3-propanediaminate ligand, and an O atom of dimethylformamide in the axial position. The other Zn^{2+} ion has a distorted tetrahedral coordination, with average $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{Cl}$ distances of 1.994 (3) and $2.2108(14) \AA$. The $\mathrm{Zn} \cdots \mathrm{Zn}$ distance is 3.161 (1) Å.

Comment

Dinuclear complexes with double oxygen bridges are of interest because of the magnetic superexchange interactions between the bridged metal ions. The magnetic properties of homo- and heteropolynuclear compounds are currently under investigation (Tuna et al., 1999). The synthesis and structures of oxygen-bridged polynuclear complexes based on Schiff base ligands, such as $\left[\mathrm{Zn}\left\{\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)(\mathrm{SALPD})\right\}_{2}\right]$ (Ülkü et al., 2001, and references therein), $\left[\mathrm{ZnBr}_{2} \mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{C}_{3} \mathrm{H}_{7}\right.\right.$ $\left.\mathrm{NO})_{2}\right]$ (Arıcı et al., 2001), $\left[\mathrm{ZnCl}_{2} \mathrm{Cu}(\mathrm{SALPD})\right]$ (Tatar et al., 1999), $\left[\mathrm{ZnCl}_{2} \mathrm{Zn}\right.$ (SALPD) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]$ (Atakol, Tatar et al., 1999), $\left[\mathrm{ZnCl}_{2} \mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ (Atakol, Ercan et al., 1999), $\left[\mathrm{ZnI}_{2} \mathrm{Cu}(\mathrm{SALPD})\right]$ (Ercan, Arıcı, Ülkü et al., 1999) and [$\left.\mathrm{ZnI}_{2} \mathrm{Cu}(\mathrm{SALPD})\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ (Ercan, Arıcı, Akay et al., 1999) [SALPD is N, N^{\prime}-bis(salicylidene)-1,3-propanediaminate $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$], have been the subject of considerable interest in our laboratory.

(I)

In the present work, a zinc-Schiff base complex, [$\mathrm{ZnCl}_{2} \mathrm{Zn}$ (SALPD) $\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$, (I), consisting of a doubly oxygen-bridged homodinuclear structure was prepared, and the crystal structure of this new complex determined. The coordination around the Zn 1 ion is a distorted square pyramid. The basal plane, defined by the atoms O1, O2, N1

Received 16 January 2002 Accepted 28 January 2002 Online 8 February 2002

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of $\left[\mathrm{Zn}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$ with the atom-numbering schemes. The displacement ellipsoids are drawn at the 40% probability level.
and N 2 , consists of two N atoms and two bridging O atoms from a bis(salicylidene)-1,3-propanediaminate (SALPD ${ }^{2-}$) ligand. The axial position of the square pyramid is occupied by an O atom $[\mathrm{Zn} 1-\mathrm{O} 32.041$ (3) \AA] of the dimethylformamide ligand. Within the coordination sphere, the average $\mathrm{Zn} 1-\mathrm{N}$ and $\mathrm{Zn} 1-\mathrm{O}\left(\mathrm{SALPD}^{2-}\right)$ bond lengths are 2.043 (3) and 2.053 (3) Å, respectively. The bond angles in the five-coordinate polyhedron have values between 75.90 (10) ($\mathrm{O} 1-\mathrm{Zn} 1-$ $\mathrm{O} 2)$ and $105.60(14)^{\circ}(\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1)$. The dihedral angle between the $\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 2$ and $\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$ planes is 32.78 (1) ${ }^{\circ}$. The Zn 1 ion is located 0.412 (3) \AA from the basal plane, towards the O3 atom.

The Zn 2 ion has a distorted tetrahedral coordination involving two bridging O atoms from the SALPD^{2-} ligand and two chloro ligands. The $\mathrm{Zn} 2-\mathrm{O} 1, \mathrm{Zn} 2-\mathrm{O} 2, \mathrm{Zn} 2-\mathrm{Cl} 1$ and $\mathrm{Zn} 2-\mathrm{Cl} 2$ bond lengths are 1.991 (3), 1.997 (3), 2.2163 (14) and 2.2054 (14) \AA, respectively. The $\mathrm{Cl} 1-\mathrm{Zn} 2-\mathrm{Cl} 2$ and $\mathrm{O} 1-$ $\mathrm{Zn} 2-\mathrm{O} 2$ angles are 119.75 (7) and $78.56(10)^{\circ}$, respectively, and these two planes are almost perpendicular to each other, the dihedral angle being 89.82 (1) ${ }^{\circ}$.

The bridged core $(\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{O} 2)$ in the title compound is not exactly planar, as also observed in the corresponding $\mathrm{Cu}-\mathrm{Zn}$ complex [(II), Tatar et al., 1999]. The dihedral angle between the planes through atoms $\mathrm{O} 1-\mathrm{Zn} 1-$ O 2 and $\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{O} 2$ is $3.07(1)^{\circ}$; this is smaller than the value of 14.04 (4) ${ }^{\circ}$ observed in (II). The bridged core and the coordination plane composed of atoms $\mathrm{O} 1, \mathrm{~N} 1, \mathrm{O} 2$ and N 2 around the Zn 1 ion form a dihedral angle of $16.03(1)^{\circ}$, which is greater than the values for related compounds: 0.44 (9) ${ }^{\circ}$ (Atakol, Ercan et al., 1999), 1.9 (3) ${ }^{\circ}$ (Ercan, Arıcı, Ülkü et al., 1999), 8.6 (5) ${ }^{\circ}$ (Tatar et al., 1999), and 11.4 (4) ${ }^{\circ}$ (Ercan, Arıcı, Akay et al., 1999). The $\mathrm{Zn} 1 \cdots \mathrm{Zn} 2$ separation is 3.161 (1) \AA.

In compound (I), the SALPD ${ }^{2-}$ ligand is not planar; the sixmembered chelate ring composed of atoms $\mathrm{Zn} 1, \mathrm{~N} 1, \mathrm{C} 8, \mathrm{C} 9$, C 10 and N 2 has a chair conformation and the atoms Zn 1 and C9 are displaced from the plane defined by the other four
atoms of the ring by 0.278 (3) and -0.717 (3) \AA, respectively. The phenyl rings are essentially planar and their average bond lengths and bond angles are $1.390 \AA$ and 120.0°.

Experimental

The ligand N, N^{\prime}-bis(salicylidene)-1,3-propanediamine $\quad(0.282 \mathrm{~g}$, 1 mmol) was dissolved by heating in a dimethylformamide (dmf)acetonitrile (MeCN) mixture ($30 \mathrm{ml}, 1: 2$). A solution of ZnCl_{2} $(0.272 \mathrm{~g}, 2 \mathrm{mmol})$ in hot $\mathrm{dmf}(20 \mathrm{ml})$ was added. The resulting mixture was set aside for 10 d and the crystals which formed were filtered off and dried in air.

Crystal data

$\left[\mathrm{Zn}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$
$M_{r}=555.09$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=10.1959$ (9) £
$b=14.443$ (3) \AA
$c=15.8359(15) \AA$
$V=2332.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.581 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.015$
diffractometer	$\theta_{\max }=27.2^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 13$
Absorption correction: ψ scan	$k=0 \rightarrow 18$
(North et al., 1968)	$l=-20 \rightarrow 0$
$T_{\min }=0.383, T_{\max }=0.397$	3 standard reflections
2929 measured reflections	frequency: 120 min
2927 independent reflections	intensity decay: 2%

2718 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.090$
$S=1.11$
2927 reflections
272 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0568 P)^{2}\right.$
$+0.9618 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10.4-18.3^{\circ}$
$\mu=2.31 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless
$0.40 \times 0.40 \times 0.40 \mathrm{~mm}$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.2^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 18$
$l=-20 \rightarrow 0$
frequency: 120 min intensity decay: 2%
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.68 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Extinction correction: SHELXL
Extinction coefficient: 0.0136 (8)
Absolute structure: (Flack, 1983), no Friedel pairs
Flack parameter $=-0.01(2)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{Zn} 2$	$3.161(1)$	$\mathrm{O} 1-\mathrm{Zn} 2$	$1.991(3)$
$\mathrm{Cl} 1-\mathrm{Zn} 2$	$2.2163(14)$	$\mathrm{O} 1-\mathrm{Zn} 1$	$2.058(3)$
$\mathrm{C} 2-\mathrm{Zn} 2$	$2.2054(14)$	$\mathrm{O} 2-\mathrm{Zn} 2$	$1.997(3)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$2.040(3)$	$\mathrm{O} 2-\mathrm{Zn} 1$	$2.048(3)$
$\mathrm{N} 2-\mathrm{Zn} 1$	$2.046(3)$	$\mathrm{O} 3-\mathrm{Zn} 1$	$2.041(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Zn} 1$	$125.1(3)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 2$	$98.58(12)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Zn} 1$	$118.5(3)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 2$	$152.58(14)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Zn} 1$	$124.0(3)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 2$	$88.28(12)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Zn} 1$	$119.8(3)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 1$	$97.17(12)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 2$	$130.5(2)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$88.27(13)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	$126.9(2)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 1$	$155.53(13)$
$\mathrm{Zn} 2-\mathrm{O} 1-\mathrm{Zn} 1$	$102.65(12)$	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 1$	$75.90(10)$
$\mathrm{C} 17-\mathrm{O} 2-\mathrm{Zn} 2$	$130.5(3)$	$\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{O} 2$	$78.56(10)$
$\mathrm{C} 17-\mathrm{O} 2-\mathrm{Zn} 1$	$126.0(3)$	$\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{Cl} 2$	$111.93(10)$
$\mathrm{Zn} 2-\mathrm{O} 2-\mathrm{Zn} 1$	$102.79(13)$	$\mathrm{O} 2-\mathrm{Zn} 2-\mathrm{Cl} 2$	$112.63(9)$
$\mathrm{C} 18-\mathrm{O} 3-\mathrm{Zn} 1$	$119.6(3)$	$\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{Cl} 1$	$113.28(10)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	$105.60(14)$	$\mathrm{O} 2-\mathrm{Zn} 2-\mathrm{Cl} 1$	$113.59(9)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 2$	$103.66(13)$	$\mathrm{Cl} 2-\mathrm{Zn} 2-\mathrm{Cl} 1$	$119.75(7)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$98.22(13)$		

The achiral molecule of the title compound, with non-crystallographic mirror symmetry, crystallizes in a chiral space group. The H atoms were positioned geometrically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and a riding model was used during the refinement process.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to acknowledge the purchase of the CAD4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Arıcı, C., Svoboda, I., Sarı, M., Atakol, O. \& Fuess, H. (2001). Acta Cryst. C57, 31-32.

Atakol, O., Tatar, L., Akay, M. A. \& Ülkü, D. (1999). Anal. Sci. 15, 199200.

Atakol, O., Ercan, F., Arıcı, C., Fuess, H. \& Svoboda, I. (1999). Acta Cryst. C55, 2023-2026.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Ercan, F., Arıcı, C., Ülkü, D., Atakol, O. \& Aksu, M. (1999). Acta Cryst. C55, 930-932.
Ercan, F., Arıcı, C., Akay, A., Atakol, O. \& Ülkü, D. (1999). Acta Cryst. C55, 925-928.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tatar, L., Atakol, O., Ülkü, D. \& Aksu, M. (1999). Acta Cryst. C55, 923925.

Tuna, F., Potron, L., Journaux, Y., Andruh, M., Plass, W. \& Trombe, J. G. (1999). J. Chem. Soc. Dalton Trans. pp. 539-545.

Ülkü, D., Tatar, L., Atakol, O. \& Aksu, M. (2001). Acta Cryst. C57, 273274.

